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Non-radial oscillations of stars in general relativity:
a scattering problem

By VALERIA FERRARI
[CRA (International Center for Relativistic Astrophysics) Dipartimento di Fisica
G Marconi ™, Universita di Roma. Rome. [taly

The problem of non-radial oscillations of stars can be formulated as a problem of
resonant scattering of gravitational waves incident on the potential barrier generated
by the space-time curvature. This approach discloses some unexpected  corre-
spondences between the theory of perturbations of stars and the theory of quantum
mechanics. New relativistic effects are predicted. as the resonant behaviour of the
axial modes in slowly rotating stars. due to the coupling with the polar modes
induced by the Lense Thirring effect.

1. Introduction

Non-radial oscillations of stars are manifested in a variety of astrophysical situations.
For example. they are observed in the Sun. and the corresponding frequencies.
measured with very high accuracy. are used in modern heliosysmology to investigate
the internal structure of the star. Moreover, non-radial pulsations are thought to be
at the origin of the drifting subpulses and micropulses detected in some radio sources.
and of the quasi-periodic variability scen in some X-ray burst sources and in several
bright X-ray sources (McDermott ef «al. 1988). Due to their central role in
astrophysics. oscillations of stars have been extensively studied both in the
framework of the newtonian theory of gravity. and in general relativity. According
to general relativity. a star vibrating into non-radial modes emits gravitational
waves. whereas gravitational waves do not exist in the newtonian theory. Thig
difterence ix a substantial one. and it is the key point of a recent vetformulation of the
relativistic theory of stellar perturbations. whose main results we shall deseribe in
this paper. This work has been developed in a series of papers (Chandrasekhar &
Ferrari 1990« b. 1991« b, 1992: Chandrasckhar e al. 1990 to be referred to
hereafter respectively as Paper 1. 11 1L IV, VI and V).

It is useful to clarify what are the specitic questions to which one is addressed in
formulating a theory of stellar oscillations. When a star is perturbed by some
external ageney. after a transient which depends on the cause of the perturbation. it
will start to oscillate at some characteristic frequencies. that, as we have seen. appear
to be coded in various radiative processes. Gravitational waves will also be emitted
with these frequencies. and with some characteristic damping times which depend on
the structure of the star. The determination of these characteristic frequencies is
therefore one of the main objects of the theory. The new formulation of the problem
of stellar oscillations presents several novelties with respeet to the existing relativistic
theory developed by Thorne and his collaborators (Thorne & Campolattaro 1967:
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Price & Thorne 1969: Thorne 1969). It leads to a different interpretation of the
problem. which discloses some surprising and fascinating analogies with the theory
of quantum mechanies. Moreover, it introduces a remarkable simplification of the
problem, and allows a generalization of the theory to the case in which the star is
slowly rotating. New phenomena, as the resonant behaviour of the axial modes. and
the coupling between polar and axial modes induced by the Lense Thirring effect,
will emerge.

But to understand how the anticipated novelties are introduced by the new
theory, we need to summarize and compare the newtonian theory and the previously
formulated relativistic theory.

In the newtonian theory the equations that govern the adiabatic perturbations of
a spherical star constitute a fourth-order lincar differential system, which couples the
perturbation of the newtonian potential with the perturbations of the variables
describing the fluid. All quantities are usually assumed to have a time dependence
~ el where o is a constant frequency, an assumption which implies a Fourier
decomposition of the modes of vibration. The system of equations must be integrated
from the centre to the surface of the star, with the boundary conditions that (i) all
physical quantities are regular at the origin, and (ii) the perturbation of the pressure.
dp. vanishes at the surface. These conditions are satistied only for a specitic set of real
ralues of o, {0}, which are the frequencies of the normal modes. Thus the problem
of finding the frequencies of the normal modes of a star in newtonian theory is an
eigenvalue problem: one has to find the real values of o such that the corresponding
solution of the equations satisfies all the boundary conditions.

A relativistic theory of stellar perturbations can be constructed as a generalization
of the newtonian theory. The resulting syvstem of equations splits into two decoupled
sets: the polar modes (the even modes in Thorne's notation). that correspond to the
tidal modes already present in the newtonian theory, and the axial modes (odd
modes), whose effect is to induce a stationary rotation in the star. but no pulsation
in the fluid. The axial modes do not have a counterpart in the newtonian theory. and
since they do not induce any motion in the fluid. they have been disregarded as
irrclevant in the literature. However. as we shall see in §§4 and 9. under suitable
circumstances they can exhibit very interesting properties.

Much more attention has been focused onto the polar modes. due to the fact that
they do exeite pulsations in the fluid. In the theory developed by Thorne and his
collaborators it has been shown that the svstem of equations governing the polar
perturbations can still be reduced. as in the newtonian case. to a fourth-order linear
differential  svstem  that couples the  perturbations of the metric with  the
perturbations of the fluid. (The reduction to a fourth-order system has been
accomplished by Lindblom & Detweiler (1983).) This system deseribes the evolution
of the perturbations inside the star. However. unlike the newtonian case. at this
stage the deseription of the problem is not complete. The perturbations in the
interior must be matched with the perturbations of the gravitational field in the
exterior of the star. to properly take into account the emission of gravitational
waves. In general relativity the frequencies of oscillation of a star are complex. The
presence of an imaginary part derives from the fact that the mechanical energy of
vibration is exponentially damped by the emission of gravitational  waves,
Conscquently, the corresponding modes are called quasi-normal modes. They are
defined as the solutions of the system of equations which govern the polar
perturbations. both inside and outside the star. that satisfy the following boundary

Phil. Trans. R. Soc. Lond. A (1992)
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Non-radial oscillations of stars 425

conditions: (i) regularity of all functions at the centre, (ii) p = 0 at the surface, (iii)
continuous matching of the interior and the exterior solution, and (iv) at radial
infinity the solution must reduce to a pure outgoing wave. In the approach we have
described, the nature of the problem does not change substantially with respect to
the newtonian theory: it is still an eigenvalue problem associated to a system of
equations which couples, in the interior of the star, the perturbations of the
gravitational field with the perturbations of the fluid.

The new relativistic theory of stellar perturbations has been constructed having as
a guide the theory of perturbations of black holes rather than the newtonian theory.
To describe the perturbed space-time we have chosen the same gauge which has been
used to study the perturbations of a Schwarzschild black hole (see The mathematical
theory of black holes (Chandrasekhar 1983, referred to as M.7T'.)). This assumption, as
remarked by Price & Ipser (1991), corresponds to an incomplete constraint on the
coordinates. However, this additional degree of freedom has no physical con-
sequences because it is eliminated by the requirement that all perturbed quantities
are well behaved at r = 0. Conversely, this choice is rich in consequences and
implications. The first is that the resulting equations are particularly simple both for
the polar and for the axial modes. A scrutiny of the structure of the equations for the
polar modes immediately shows that it is possible to decouple the equations
describing the perturbations of the gravitational field from the equations describing
the perturbations of the fluid. As a consequence, the equations for the perturbed
gravitational field can be solved, with no reference to the motion that can be induced
in the fluid. This is a relevant difference between our approach and the newtonian
approach (or its previous relativistic generalization). In fact, due to this decoupling,
the problem of finding the frequencies of the quasi-normal modes is transformed into
a problem of resonant scattering. But to fully understand the physical content of the
theory and its consequences, we now need to enter into the details of its mathematical
formulation.

2. The equilibrium configuration

The metric for a static, spherically symmetric distribution of matter can be written
in the standard form+¥

ds? = e*(d¢)? —e?:(dr)? —r*(d6? +sin? O dg?). (1)

Inside the star, the functions v and g, can be determined by solving Einstein’s
equations coupled to the equations of hydrostatic equilibrium. We assume that the
star is composed by a perfect fluid, whose energy-momentum tensor is given by

1% = (p+e) wn’ — pg*, (2)

where p and e are respectively the pressure and the energy density, that are assumed
to have an isotropical distribution, and u* is the four-velocity of the fluid. By defining
the mass contained inside a sphere of radius r as

m(r) = JT ertdr, (3)

0

1 We adopt the conventions G = ¢ = 1, G;; = 2T, and the Riemann tensor defined as in M.T'., ch. 1.

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

/,//’ \\
/

/\
\\
& N

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

"/\\
A Y

A

i \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

426 V. Ferrart
the relevant equations are
v,=—p,/(p+e), (4)
[1=2m(r)/r]p , = —(e+p)[pr+m(r)/r*] ()
and e¥e = (1—=2m(r)/r)" . (6)

When the equation of state of the fluid is specified, (3) and (5) can be solved
numerically and the distribution of pressure and energy-density through the star can
be determined. Once ¢ and p are known, (4) can be integrated

V= ——f (€+p)d +v,. (7)

The constant v, is fixed by the condition that at the boundary of the star, » = R, the
metric reduces to the Schwarzschild metric

(€¥),p = (€7%),p = 1 —2M/R, (8)

where M = m(R) is the total mass.
Qutside the star the metric is the Schwarzschild metric in its standard form

ds® = (1—2M/r) (dt)2— (1 —2M /7)1 (dr)2 —r?(d6* +sin? 6 dg?). (9)

3. The perturbed space-time

We restrict our analysis to the study of axisymmetric perturbations of a star. This
assumption implies no loss of generality, since, due to the spherical symmetry of the
background, non-axisymmetric modes can be deduced from axisymmetric per-
turbations by a suitable rotation of the polar axes (see M.7T'., §4.23). A line-element
appropriate to describe an axially symmetric, time-dependent space-time is

ds? = e?(dt)? —e¥ (dp— g, da? — g, da® — wdt)? — e*2(da?)® — e?s(da®)?. (10)
In the following we project the equations onto an orthonormal tetrad

€lay €y 917 = Ny (11)

where 7,4, = (1, =1, —1, —1).

When a star is perturbed, each element of fluid suffers an infinitesimal displace-
ment from its equilibrium position, identified by the lagrangian displacement &.
Consequently, the metric and the thermodynamical variables change by an
infinitesimal amount with respect to their unperturbed values (indicated by a bar)

v>TU4+0v, o>y +Ou,, €-—>€+de, }
— B 3 (12)
Yo+, py > iy +Spy, p—>p+p,

and ©->03w, ¢y->0q,, qy—>0q;. (13)

It should be recalled that w, ¢, and ¢, are zero in the unperturbed state. All perturbed
quantities depend on ¢, r and 6. If we now write Einstein’s equations, the

Phil. Trans. R. Soc. Lond. A (1992)
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hydrodynamical equations and the conservation of barion number (see Paper 11, §§4
and 11) we find that they decouple into two sets: the polar modes, involving the
variables given in (12) and the lagrangian displacement &, and the axial modes,
involving the off-diagonal perturbations of the metric (13). The same decoupling into
axial and polar modes also occurs when a Schwarzschild black hole is perturbed.
However, as we shall see in the following, polar and axial perturbations of stars
behave differently.

4. The axial modes

The axial modes do not have a newtonian counterpart. They are purely
gravitational modes, since they do not produce any motion in the fluid except for a
stationary rotation. The equations for the axial modes are the following.

OR (1) = 20T (g9 = (€T 17#2 Qq) eVt Q, =0, (14)
OR (1)) = 28T () > (€W 719712 Qyq) ,— M HTIQ = 0, (15)
where Qo3 =805 4= 85 ., Qoo = 8w, —8qy ;. Qo3 = 0w ,— 3¢ ;.

Assuming that all perturbed quantities have a time dependence €', (14) and (15) can
easily be reduced to the following second-order equation

(e dH ot X ) o (e MW IY ) ot g St X = (), (16)
where we have put etV QL = X, (17)

Equation (16) can be separated by expanding the function X in terms of the
Gegenbauer polynomials C%(6), defined by the equation

d 12V d 11 2V v —
[Eésm 0d0+n(n+ 2v) sin 0] ch(60) = 0. (18)
By introducing a new radial variable r, defined as
T
Ty = f e Trady, (19)
0
and putting X =rZ(r) C; 212 (0), (20)
equation (16) reduces to the following radial equation
d*Z/dr% +[o*—U(r)]Z = 0, (21)
where Ur) = e/ [I(1+ 1) r+73(e—p) — 6m(r)]. (22)

Outside the star ¢ and p are zero and (22) reduces to the Regge—~Wheeler potential
(Regge & Wheeler 1957).

Thus the axial modes are completely described by the Schrédinger equation (21),
valid from the centre of the star to radial infinity, with a potential barrier (22), that
depends on how the energy-density and the pressure are distributed in the interior
of the unperturbed star.

Given a model of star, solution of the equilibrium equations, (21) can be integrated
numerically. The solution free of singularities at the origin has the expansion

1
sy (BRI e —pol— ol (23)

Phil. Trans. R. Soc. Lond. A (1992)
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where €, and p, are the values of the energy-density and of the pressure at the centre
of the star, and o, =e* 0. The asymptotic behaviour of the function Z when
Ty —> 00 18

Z— +{a—pn+1)/or—(1/20%) [n(n+1)a—3Maf]r 2+...} cosory
—{f+an+1)/or—(1/20%) [n(n+1) f+3Moa]r2+...}sinor,. (24)

o and S, which will play a relevant role in the following development of the problem,
are functions of ¢, and can be determined by matching the solution obtained by
numerical integration of (21), with the asymptotic behaviour (24).

Since the axial modes are described by the Schrodinger equation (21), the problem
of studying the axial perturbations of a spherical star is a problem of pure scattering
in a spherically symmetric, static potential. Therefore we can apply the methods
developed in the framework of quantum mechanics in the context of the classical
theory of relativity. We can assume that the star is perturbed by an incident
gravitational wave of arbitrary frequency, and study the response of the star by
evaluating how much of the incident wave will be transmitted or reflected by the
potential barrier, in the same way in which the properties of a nucleus described by
a Schrodinger equation are investigated by scattering waves of different energy on
its potential barrier.

A relevant question which emerges at this point is whether the scattering is, in our
context, resonant. If it is not resonant, the star will simply behave as a centre of
elastic scattering for incident gravitational radiation. Conversely, if it is resonant,
the star will be able to emit gravitational waves with frequencies equal to the
characteristic resonance frequencies. An extensive answer to this question will be
given in §9.

5. The polar modes

The polar modes couple the perturbations of the diagonal part of the metric (10)
(8v, 0r, Bpuy, Spuy), With the perturbations of the energy density d¢, of the pressure dp,
and the lagrangian displacement &. In contrast with the case of the axial modes,
polar modes do excite the motion of the fluid that composes the star.

We shall assume that the perturbations take place adiabatically, i.e. that the
changes in the pressure and in the energy-density arise without dissipation.

The equations which describe the polar perturbations are the Einstein equations,
the hydrodynamical equations, and the conservation of barion number. Since we are
mainly interested in showing the results of the new theory, we shall omit the explicit
derivation of these equations which can be found in Paper I and II. Here we only
remark that the relevant equations can be separated by performing the following
substitutions in terms of the Legendre polynomials, P,, and their derivatives:

dv = N(r) P, (cos?), Bu, = L(r)P,(cos?),

(25)
By = T(r) P+ V() Py y 5 8 = T(r) Py+ V() Py ot 9, |
(cf. M.T., p. 147, eqns (36)—(39) originally due to J. Friedman), and
dp = I(r)P,(cos?), 2(e+p)etrg,(r,9) = Ur) P, 1 (26)

8¢ = B(r) P (cosd), 2c+p)e g, (r,9) = W(r) Py,

where £, and &, are respectively the » and 0 tetrad-components of the lagrangian
displacement. After the separation, we are left with a system of coupled equations

Phil. Trans. K. Soc. Lond. A (1992)
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involving the following variables: N(r), L(r), T(r), V(r), which describe the radial part
of the perturbation of the metric, and U(r), W(r), II(r), E(r), which describe the radial
part of the perturbation of the fluid. The resulting equations are:

[d/dr+ (7 —v )] @T—kV)—(2/r) L = U, (27)
(T—V+N), -—( Ly JN—('4v )L =0, (28)
g 2 [(2/r)N A+ v ) @T—kV) ,—(2/r) (r ' +2v ,) L]

1[—7‘2(2n1’+kN)+¢72 2T —kV)] = IT, (29)
Vi, +@/r+v —py )V, +(*/1?) (N+ L)+ o2 >V =0, (30)
W= —(T—-V+L), (31)
Il = —1o° e‘z“W—(e—i-p)N (32)

HoPe W +1)v  Ho?e W)+
= L 1[02)e—2”+Q E1 r/2(€+p T )+ Qp‘ ?P N ], (33)
= QI+ (e7*/2(e+p)) (e, —Qp, ) U, (34)
where k=11+1), 2n=(1—1)(1+2)=k—2, Q= (e+p)/yp, (35)
and Y = [(e+p)/P] (0P/0€)entropy=const ; (36)

is the adiabatic exponent (defined in Paper 1, eq. (106)).

One can immediately recognize that (31)—(34) give the fluid variables as a
combination of the metric perturbations 7', V, L, and N. Therefore, if we replace the
expressions of U and I7 given by (33) and (32) on the right-hand side of (27) and (29),
we are left with a system of equations which involves only the perturbations of the
metric functions (7, V, L,N)!

It should be stressed that the decoupling of the equations governing the metric
perturbations from the equations governing the hydrodynamical variables is possible
in general, and requires no assumptions on the equation of state of the fluid.

We are therefore in a situation totally different from the newtonian case: we can
solve the equations for the perturbations of the metric independently on the motion
which is induced in the fluid.

Outside the star the variables related to the fluid, /7 and U, vanish and the system
of equations (27)-(30) can be reduced to a single Schrodinger equation (the Zerilli
equation (Zerilli 1972a, b)) with an associated potential barrier

(d?/dri+0*) Z =VZ, (37)

where the function Z is defined as

7 M
- () (38)
and Vir)= Z(gy—:-igl))z [(n®(n+ 1) 73+ 3BMn2r* 4+ OM>nr + IM?). (39)

The radial variable 7, is the ‘tortoise’ coordinate
T =7+2MIn (r/2M —1). (40)

We now want to integrate the perturbation equations both inside and outside the
star.

Phil. Trans. R. Soc. Lond. A (1992)
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(@) The integration of the equations

To numerically integrate the decoupled system for (7', V, L, N) in the interior of the
star (we assume that the aforementioned substitution for U and II in (27) and (29)
has been performed), we need to find the behaviour of these functions near »r = 0. We
can seek a power series solution of the type

(T,V,L,N) ~ (Ty, Vo, Ly, N)) r* + O (r**2), (41)

where x is an exponent to be determined, but if we substitute these expressions into
the equations we discover that the system is linearly dependent near the origin. This
difficulty can be circumvented by introducing a suitably defined new variable. For
the sake of simplicity, in the following we shall restrict our consideration to the case
when the fluid obeys a barotropic equation of state, i.e. when the pressure is a unique
function of the energy density, p = p(¢). In this case @ = ¢ ,/p, ,, and the equations
considerably simplify. We shall replace the variable 7' by the new variable ¢ defined
as
@ = v, [(n+ 1)/m) X=T] ;4172 (%= 1) [0(N+ 1)+ N1+ (v ,/r) (N + L)
—e¥2(e+p)N+3o2e? ™ [L—-T4+(2n+1)/n) X], (42)
and the variable IV by X = nV.
The final set of equations we shall integrate is
X, 4 @fr v, =iy )X+ (0fr) N+ L) + 02 XX =0, (43)
(1°G),, = mw (N= L)+ (/1) (s~ 1) (N+L) +1(v,,— sty ) X, + 020X, (4)
—v,N,=—=G+v [X, +v, (N=L)]+r e —1) (N—rX ,—r*G)
—e¥s(e+p) N+io2 e N+ L+ (r*/n) G+ (1/n) X ,+ (2n+ 1) X]}, (45)
—L,=(N+2X) ,+(1/r—v ,) (=N+3L+2X)
+[2/r—(@+1)v J[IN=L+(r*/n)G+(1/n) (rX ,+X)]. (46)
This is a fifth-order linear differential system. It has been shown (Price & Ipser 1991)
that it can be reduced to a fourth-order system ; however, we prefer not to use that
reduction because our equations are considerably simpler.
The system of equations (43)—(46), which involves only the perturbations of the
gravitational field, can now be integrated from the centre to the surface of the star,

in the following way. As before, we shall assume that, near the origin, the functions
have the asymptotic expansion,

(X> G>N>L) = (X0> GO’M7LO) re + (X27 G2>A72’L2) 7ﬁx+2v (47)

where both the exponent x and the coefficients of the expansion have to be
determined by inserting (47) into (43)—(46), and by setting to zero the coefficients of
different powers of . From the lower-order terms we obtain a homogeneous algebraic
system of four equations for the four coefficients (X, G, N,, L,):

r(x+1) Xy+n(Ly+N,) =0,
[((@a—b)x+ 03] Xy— (x+2) Gy +n(a+b) Ny—n(a—b) L, = 0,
[(a—b) 2+ (03/2m) (@ + 2n+ 1)] Xy— G+ alw— 1) Ny+ 302 Ny + o3 Ly = 0,
2[x((n+1)/n)+2] Xo+ (x+1) (N,+L,) =0,

Phil. Trans. R. Soc. Lond. A (1992)
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where a and b are the coefficients of the expansion of the metric functions
e~ 1+brt =14 (%¢,) %, e ~ 1+ar? =1+ (p,+1¢) % (49)

The system (48) admits a non-trivial solution only if the determinant is zero. This
condition provides the indicial equation for the determination of x:

na(x+1) (x—)*x+I1+1)* = 0. (560)

Surprisingly, we see that there are only two coincident values of  which correspond
to regular solutions, i.e. x = /. That means that, although our original system is of
order five, only two independent solutions are acceptable. This is a great
simplification with respect to the old theory, where four independent solutions had
to be integrated through the star and then matched to satisfy the boundary
conditions. In selecting the admissible values of x, we eliminate the extra degree of
freedom due to our incomplete gauge specification. A possible choice for the two
independent solution is:

Ly=0, N,=1, —(n/l(I+1))N, 1 )
G, = +1 {a+b 1/1(z+ ) [(@—b) l+00]}2\{),J
N,=0 L0=1, — mJU(I+1)) L, 1 (52)
G’0=—%(l—l){a—b—l—(l/l(l—l—1))[(a b) I+ o2} L. j

The coefficients (X,, G,, N,, L,) in the expansion (47), can be found by equating to zero
the coefficients of the next power of x into the expanded equations.

We can now numerically integrate (43)—(46), with the initial conditions (51)—(52).
It remains to be ascertained whether two independent solutions are sufficient to
satisfy the boundary conditions required by the problem. As in the newtonian case,
we need to impose that the perturbation of the pressure dp vanishes at the surface
r = R, but in addition we need to impose that the interior solution joins continuously
with the solution in the exterior of the star. To satisfy the continuity condition at
r = R, (27)—(30), which are equivalent to (43)—(46), must reduce to those appropriate
to the vacuum, and therefore it must be

II=0 and U=0. (53)

The vanishing of 3p at the boundary is included in the first of (53), since I7 is the
radial part of dp (see (26)). Since we are solving the barotropic case, from (32) and
(33) it follows that

II=—}c?eW—(¢+p)N and U=W, +(@-1)v W (54)
For a fluid star ¢ and p tend to zero at the boundary. Moreover
=€ r/p r_)Ql/ -—I‘ V,r_)vll and W_>(R_7') I,Vlea(R—r), (55)

where @, 1, W1 and a are constant. Since ¢, p and W tend to zero, from equation (54)
it follows that the first condition, IT =0, is automatically satisfied by any
independent solution! Conversely, from (55) it follows that U tends to a constant

value
U~ W,+v;Q, W, = const., (56)

and we need to consider a linear combination of the two independent solutions in
such a way that the remaining condition, U = 0, is satisfied at the boundary.
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Therefore the two degrees of freedom given by (51) and (52) are precisely what we do
need to match the interior and the exterior solution, and to satisfy the condition
dp =0.

Now the strategy of integration is clear: we integrate the two independent
solutions of (43)—(46) for the metric perturbations, with the initial conditions (51)
and (52). Then we linearly superimpose the two solutions in such a way that at the
boundary U = 0. At this point we have the values of X, L, X , and L ,atr=R, and
we can construct the functions Z(R) and Z , (R) given by

) r 3M
a0 = rilfrcr—lo "T+M(_n_

With these initial values, equation (37) can be integrated. The asymptotic behaviour
of the function Z for large r is

X—ﬂ;), Z, (R) :(1~%) lim Z ,(r). (57)

R r—>R—0

B n+1 1 2 1
7~ —I—{oc—Tg—ﬁ[n(n—Fl)oc—3 0'<1+7~L)/J’]ﬁ+...}cos0'r*
n+la 1 2 1 .
—{ﬂ+—;—;—ﬁ[n(n+ 1)ﬁ’+§M0'(1+%)a]ﬁ+...}smo‘r*, (58)

where, as in the axial case, « and g are functions of ¢ to be determined by matching
the integrated solution with the asymptotic behaviour (58). The solution is now
complete.

(1) The consequences of the decoupling

In this section we have shown how to construct the solution for the polar modes
by solving a system of equations that do not involve the variables which describe the
perturbed fluid : they can be found, if required, from (31)—(34) in terms of the metric
perturbations by simple algebraic relations. We therefore concentrate our attention
on the perturbations of the gravitational field with no reference to the motion of the
fluid, and, again, we can treat the problem as a scattering problem. This is a relevant
result that does not have a counterpart in the newtonian theory.

A counterpart has to be found in the theory of perturbations of a Schwarzschild
black hole. In that case, both the polar and the axial modes are governed by a
Schrodinger equation, and the problem is manifestly a scattering problem : incident
gravitational waves are scattered by the curvature of the space-time. The analogy is
immediate in the case of the stellar axial modes which, as we have seen, are also
described by a unique Schrodinger equation. In that case the potential barrier is
generated by the curvature of the space-time produced by the particular distribution
of energy density and pressure inside the star.

In the case of the polar modes we do not have a simple problem in potential
scattering, as it was in the case of the axial modes. Here a Schrédinger equation holds
only in the exterior of the star, and a much more complicated fifth-order system must
be solved in the interior. However, we can still imagine that the perturbation is
originated by an incident polar gravitational wave, and that the incoming wave
drives the fluid pulsations which emit the scattered component of the wave.

The consequences of this new viewpoint will be manifest in the next sections where
we shall develop a very simple algorithm to find the frequencies of the quasi-normal
modes, and a method to evaluate how the gravitational energy flows through the star
and in the exterior. Another element of interest in this theory is the remarkable
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simplification of the problem: only two independent solutions are needed to find the
complete solution and satisfy the boundary conditions.

6. An algorithm to find the frequencies of the quasi-normél modes

In Paper V we have developed a method to determine the complex characteristic
frequencies of the quasi-normal modes, which is based on the scattering nature of the
problem. We shall now formulate the theory in general, and then specify how it can
be applied to the axial and the polar modes. Let us consider a Schrédinger equation

A2Z,/drt + (= V) Z, = 0, (59)

where V is a spherically symmetric, short-range potential barrier, i.e. V < o(r}!) for
re— 0. We want to find the complex values of the frequency such that the
corresponding solution of equation (59), regular at r, = 0, behaves as a pure outgoing
wave at radial infinity, i.e.

Z,~ e when r,—>o00, (60)

where o, = o+i0; and Z, = Z +iZ;. By separating the real and the imaginary part
in (59), we find

d*Z/drs, —VZ +(0®—0}) Z—200,Z; = 0, (61)
d2Z,/dr: —VZ,+ (02 —o0}) Z;+ 200, Z = 0. (62)

We shall assume that o; € o. In our context this condition implies that the decay
time of the emission of gravitational waves, 7 = 1/0}, is much longer than the real
part of the frequency o, a condition which is always satisfied for stars (only for black
holes o is comparable with o). If we now put Z, = o; Y, and neglect the terms of order
O(c?) in (61) and (62), they become

d*Z/dr2 + (o*—=V)Z = 0, (63)
d2Y/dri + (o*—= V)Y +20Z = 0. (64)
From (64) it follows that
0,
Y(’I"*, U) = %A(Vﬂo U)? (65)
and consequently
Z (T4, 0,) = Z(ry, o) +1i0; [;;Z(r*,a)]. (66)

Therefore when o; € o, we can construct the complex solution Z, corresponding to
a complex value of the frequency o, by integrating only equation (63) for the real
part Z, and for real values of the frequency o.
(1) The asymptotic behaviour of Z,

When r,-> o0, the potential V tends to zero and (63) admits two linearly
independent solutions Z, and Z, which have the following asymptotic behaviour

Z,>co80re +0(ryt), Zy—>sinor, +0(ryl).
Thus the general real solution Z is
Z(T*7O') = a(O') ZI(V*,O')—IB(O') ZZ(T*,U)’ (67)
Phil. Trans. R. Soc. Lond. A (1992)
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where a(o) and (o) are functions to be determined by matching (67) with the
integrated solution of (63) for different initially assigned values of real o. From (65)
and (66) it follows that the eomplete solution for Z,, up to terms of order O(c?) is

Z,=7+10,0Z /00 = a(0) Z,— (o) Zyio, [’ (0) Z,— B (0) Zy+ (o) Z7— B(0) Z3],
(68)

where the prime indicates differentiation with respect to o. For sufficiently large
values of 7, the behaviour of Z, is

Z,—~ (a+io;a’ —ioy fry) cos ory — (f+ 10y f/ —i0yory) Sin o7, (69)

It is clear that the terms proportional to r, would eventually diverge if r, — co.
However, in the limit o; < o, the asymptotic behaviour (67) that we use to determine
o and f, is established long before these terms begin to dominate. Therefore, if the
value of r, where we start to match the integrated real solution Z with the
asymptotic behaviour, is large enough that (67) can be applied, but not so far that
the exponential growth has taken over in (69), the diverging terms can be neglected,
and the asymptotic form of Z, can be written as

Z,—>Yoa—of)+i(f+oa)] e+ (a+o, f)—i(f—o;a’)] e "=
= I(o)e™ " +0(o) e 7. (70)

(That such value of r, does indeed exist has been shown by a direct verification in
Paper V.) We now impose the outgoing wave condition, by setting to zero the
coefficient of the ingoing wave, I(g), in (70)

a—o;f/ =0 and pH+o,a =0. (71)

Eliminating o; we finally find
ao +pp = 0. (72)

This equation says that if there exists a value of real o, say o = o,, where the
function («®+ %) has a minimum, then the solution Z, at infinity will represent a
pure outgoing wave. Therefore, o, is the real part of the complex characteristic
frequency belonging to a quasi-normal mode. The imaginary part can be obtained
from (71) evaluated at o = o

gy = (a/ﬂ/)l(o'=o'0) = _(ﬂ/a/)l(o:ao)' (73)

Equation (72) suggests an alternative method to find ;. Since the function (a?+ £?)
has a minimum when o = o, in the region o ~ ¢, it can be approximated by a
parabola

o?+ % = const. [(0— )2+ 0] (74)

and o; can be determined by matching the values of («?+ ?) obtained by numerical
integration, with (74).

The application of the algorithm we have described to the axial modes is
straightforward. We integrate the Schrodinger equation (21) with the initial
conditions (23) for different values of real . For sufficiently large r,, we match the
integrated solution with the asymptotic behaviour of Z given in (24) and determine
the values of a and g. Then we find the values of o = o) where the resonance curve
(a4 f?) has a minimum (if they exist): o, will be the real part of the eigenfrequency.
The imaginary part will be found from (73), or alternatively, by fitting the resonance
curve with the parabola (74). The same procedure can be applied in the case of the
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polar modes. The difference with respect to the axial case is that inside the star we
need to integrate the system of equations (43)—(46) in the manner described in §5.
The purpose is to find the initial values for the function Z at the boundary of the star,
which are needed to integrate the Schrodinger equation (37) outside the star. At
sufficiently large values of r,, the integrated solution will be matched with the
asymptotic behaviour (58), and « and g will be determined. We shall then proceed
as in the axial case.

To conclude this section we would like to stress the basic difference that exists
between the newtonian and the relativistic approach to the problem of finding the
frequencies of the normal (quasi-normal in the relativistic case) modes. In the
newtonian theory one has to solve an eigenvalues problem associated to a system of
equations which couple the perturbations of the fluid with the perturbations of the
gravitational field. In the relativistic theory we solve a problem of resonant
scattering of gravitational waves by a potential barrier. The implications of the
analogy with resonant scattering in quantum mechanics will be further discussed in
the next sections.

7. Some further analogies between oscillations of stars and resonant
scattering in quantum mechanics

There is clearly a strong resemblance between (74) and the Breit—~Wigner formula
cross section = const./((E—E,)*+1[?) (75)

(see, for example, Landau & Lifschitz 1977, pp. 603-611) used in atomic and nuclear
physics, and it is interesting to clarify this analogy. In the context of quantum
mechanics, resonant scattering occurs when a system is in a quasi-stationary state
that decays, as for example a radioactive nucleus which emits an «-particle with
energy K, and lifetime 7 =7%/I". The Schrddinger equation appropriate to that

problem is
d*Z/dri +(E—V)Z =0, (76)

and one assumes that Z is an analytic function of the complex energy E. (In the
notation of this paper o = const. 4/E, and the constant of proportionality is real and
positive.) The complex plane is cut along the positive real E-axis in order to make Z
a single-valued function. The asymptotic solution for large values of 7, is of the form

Z(B) ~ I(E) e""sVE + O(E) e"ir+VE, (77)

and if £ is real and positive O(E) = I*(E), and Z(E) is real. The scattering amplitude

follows in the usual way _
8, = et = (— 1)L (I*/I), (78)

where [ is the angular momentum associated to the order of the Legendre polynomial,
and ¢, is the phase-shift. A quasi-stationary state corresponds to a zero of the
function I(E) (or to a pole of the scattering amplitude §;), where the corresponding
asymptotic wave function (77) reduces to a pure outgoing wave. To obtain the
Breit-Wigner formula, one postulates the existence of a pole lying close to the
positive real axis, at some complex energy £ = E,—3iI’, and by expanding /() in the

vicinity of the zero
I(E) ~ const. (E—E,+%I), (79)

the cross section (75) immediately follows.
Phil. Trans. R. Soc. Lond. A (1992)
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Let us now see what is the connection between this approach and the algorithm
developed in §6. We have shown that if the function («?+ £?) has a minimum for a
value of real £ (real o), then the amplitude of the ingoing part of the asymptotic
wavefunction I(E) is zero, provided I" < E(o; < o). Therefore, for such value £ = E,,
[/(E)|* must also have a minimum and

II¥+1*' =0 or I'JI= —(I¥/I¥%), (80)

where the prime indicates differentiation with respect to E. Thus, apart from the
trivial case I”=0, (I’/I) is imaginary at E,, say —2i/I. Since the logarithmic
derivative is purely imaginary at £, we may analytically continue the function 7 in
the complex plane and expand in the vicinity of B,

HE) ~ I(E)) [\ +(I'/ D) g_p,(E —Eo)] ~ 1(E,) [1+21(E—E,)/I. (81)

A comparison with (79) shows that the Breit—Wigner formula can now be derived by
the usual procedure. Thus our approach also leads to the Breit-Wigner formula, but
we have focused the attention on the amplitude of the standing wave prevailing at
infinity

A(o) = <27%)3, = a+if, (82)

rather than on the amplitude of the ingoing part of the wave I(o). It should be
stressed, however, that, while in quantum mechanics the existence of a resonance is
postulated, and the values of B, and I" are known from experiments, in our context
we provide a method to evaluate both o, and o,.

The analogies between the theory of oscillations of stars and quantum mechanics
do not end here. We shall see in the next section that a suitable generalization of the
Regge theory allows to define the flow of gravitational energy through the star.

8. The flow of gravitational energy, an application of the Regge theory

The Regge theory (Alfaro & Regge 1963) is applicable to the problem of potential
scattering when the wave equation is separable, and the wave function can be
written in terms of a radial function and a Legendre polynomial P,(cos ). In that
case the radial wave equation can be written by separating explicitly the ‘centrifugal’
part of the potential barrier

AZ/dr* + [0 — 11+ 1)/ —U(r)| Z = 0, (83)

and U(r) is a short range, central potential. The amplitude of the standing wave at
infinity is now considered as a function of the frequency and of the angular
momentum /

A(o,l) = a(o, ) +if(c, 1), (84)

and it is assumed to be an analytic function in the variables o and /, which are both
assumed to be complex. Further, to any given pole (o, +i0;;1,), corresponding to a
fixed integral value of the angular momentum /,, there exists a Regge pole in the
complex [-plane, (0,;l,+1il;), belonging to the same quasi-stationary state. Con-
sequently, in the neighbourhood of (cy,/,), the amplitude 4 can be analytically
continued either in the complex o-plane

A(o) ~ [04(0) /00, [0 — (07 +i0y)] (85)

and lA(0)* = o+ % ~ [04(0) /015 -, [(0 = 07p)* + 0], (86)
Phil. Trans. R. Soc. Lond. A (1992)
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or in the complex /-plane
A(o) ~ [04(07g; 1) /0], [1— (I +ib5)] (87)
and (0 + %) ~ [0A (0 ) /AUN7 [(E—1)* + 3] (88)

It is now clear that we can generalize the algorithm developed in §6 to find the
resonance in the complex o-plane, to determine the corresponding resonances in the
complex [-plane. We shall assume that o = o, is known and fixed, and that the
angular momentum is complex

lo = 1+il;. (89)

If we assume that |/} </, in analogy with (66) the corresponding complex solution
Z,=Z+iZ;, where now Z = Z(r;0,,1), can be written as

Zc(/r; Ty, l+ lll) = Z(Ta e l) + 1l1[a/(")lZ(r 300 l)]> (90)

and the complete complex solution Z, can be derived from the only knowledge of the
real solution Z(r;o,1). The procedure to find [, and /; is therefore the same as that
described in §6 (equations (72), (73) and (74)), with the only difference that now the
square amplitude of the standing wave at infinity («*+ /%) has to be considered a
function of real /.

Once [, and [; are known, they can be substituted explicitly into (83), that becomes

d2Z,/dr? + [0t —1y(l,+ 1) /r* = U(r)] Z, = il;((2l,+ 1)/ 7*) Z+ O(I}). (91)

Multiplying equation (91) by Z¥ and subtracting from the resulting equation its
complex conjugate (complex conjugation is taken with respect to [.), we find that

& (2281, =21, P i (92)
dr
where (50, 2%, = Z, 2~ 1%, 2, (93)

is the wronskian. Since Z; is of order [; (cf. equation (90)), up to terms of order
O(3)|Z,|* = Z*, and from equation (92) it follows that
. "dr
(Z., Z¥), = 2i;(2l,+1) ——Z2 (94)
0
The integral on the right-hand side converges for r - co and it is positive definite. In
quantum mechanics the non-constancy of the wronskian exhibited in (94) is
interpreted as the emission of a new particle in the field volume (see, for example,
Landau & Lifshitz 1977, p. 588). The knowledge of the pole (/y,/;) is therefore
essential to evaluate (94).

The theory now described can be immediately applied to the axial modes, provided
they are resonant. The fact that the radial wave equatlon (21) is obtained by
expanding the wave function in Gegenbauer polynomials C74,, instead of Legendre

polynomial P,(cos8), does not affect any conclusion we have reached so far. The
radial equation (21) can be rewritten in a form analogous to (83):

A*Z,/dry + (0" — (/") l(1+1) = U(r)] Z, = 0, (95)
where U(r) = e¥[(e—p)—6M/r?]. (96)
If we now assume that o = o, is the real part of the frequency of a quasi-normal
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mode previously determined, and { = [, +i/;, is the corresponding pole in the complex
{-plane, equation (95) can be written in a form equivalent to (91)

d*Z,/dri +[os— (e*/r?) l,(ly+ 1) — U(r)] Z, = il;(2ly + 1) (e*/7*) Z, (97)

where Z, = Z(ry, 04,1, +1;). Multiplying by Z¥ and subtracting from the complex
conjugate equation we find

T 021/

(Ze, Z§],, = 2il;(2l,+ 1) -70—2—Z2 dr. (98)

0
In analogy with the interpretation of equation (94) given in the context of quantum
mechanics, we can interpret the right-hand side of (98) as the measure of gravitational
energy which crosses a sphere of radius r,.

It should be stressed that to define the flow of energy through and outside the star
we do need to use the Regge theory. One may ask why didn’t we try to evaluate the
flux by assuming / real, o complex, and operating on (95) with the function Z}
complex conjugate to Z, with respect to o. The result in that case would be

d .
W[ZC,Z;"]” = —dio,0;|Z,)?, (99)
*
where now Z, = Z(ry, oy +1i07,1,). Consequently
T
(2022, = ~dioyo, | 12 dr, (100)
0

But in this case, if we require that the solution is exponentially damped in time, i.e.
o; > 0, the asymptotic behaviour of |Z,|> would be

|Z)? ~ exp (—20;t) exp (205 74), (101)

and the integral would explode. The application of the Regge theory is therefore
essential to circumvent the obstacle of the divergent integral. The question now is
whether this theory can be applied to the polar modes.

The resonant scattering of polar gravitational waves is not a conventional
potential scattering. Inside the star we have to integrate a fifth-order differential
system whose solution must be properly matched with the solution of the Schrédinger
equation which governs the perturbations of the gravitational field outside the star.
Thus the Regge theory cannot be applied in its standard form. However, a
generalization is possible. In Part IT of Paper I (equations (132)—(134)) it was shown
that the polar perturbations allow a conservation equation of the form

By o +H,y =0, (102)

where E is a vector we shall define, 2> = » and 2® = y = cos#. By Gauss’s theorem,
it follows that, if ¢, and C, are any two closed contours, one inside the other, in the
(«®, x®)-plane

J (B, da® — B, da?) = f (B, dz® — B, da?), (103)
c, c

2

provided E is not singular inside the area included between O, and C,. If we now
assume that the closed contour is a circle of radius », equation (103) becomes

(Hy = J r? E,sin 0 df = const., (104)
0
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which expresses the conservation of the flux of the vector E across a spherical surface
of radius 7 surrounding the star. We shall now write explicitly £,, which is the only
component of E relevant to our problem,

By = r* e sin 0{[8pg, 1y + [, 8y *], — [Ov , 8(Y +p5)* —c.c]
858 (Y + )%y — c.c. ]+ [2[(€+ ) SO + pg — ) * — p*l e £y —c.c.]h. (105)
Separating the variables as in (25), (26), after some reduction we find

121+ 1) (B,> = n+1)f et [(N+L) X* — (N+L)*X] dr

ettt {(n 1) r[(N+X) F* — (N+ X)*F} + 3 (ITF* — ITF)}
e Lry (UF*—U*F)+ (1/2(c+p)) [IU*— IT*U)},  (106)

where we have defined ¥ = L + X 4+ W. Equation (106) has been formally derived from
the equations describing the polar perturbations, by considering a solution (8, du,,
Sus, 01, §,), and the complex conjugate solution of the same equations, for real o and
real /. Under these conditions, according to (104), (E,) has the meaning of a
conserved quantity. But the boundary conditlons of the problem discussed in §5 do
not allow a physically meaningful complex conjugate solution for real os and real Is.
Therefore equation (106) cannot be used as it-stands. However, we can assume, as we
did for the axial modes, that the polar perturbations are described by functions that
are analytic in the complex /-plane, and we can extend all perturbations as in (88).
For example, we can assume

ol ol

and similarly for the other functions, where N(r; o,,1), X(r;0,,1l), etc., are solutions
of (43)—(46) corresponding to real o = o, and real l. In Paper VI we have shown that
this extension is indeed possible, and that to any pole (o, 0;) there exists a
corresponding pole (I,,l;) belonging to the same quasi-normal mode. Under these
premises, the analytic extension of (#,) in the complex [I-plane can also be
performed, and the right-hand side of equation (106) can be evaluated in terms of the
extended solution (107) to give the flux of gravitational energy through the star.

NC=N(r;00,l)+1l[ N(r;o*o,l)], X.=X(r;o,! )+1l[ X(r;ao,l)], (107)

9. Some consequences of the new relativistic theory

One of the major novelties introduced by the relativistic theory that we have
described in the preceding sections is that both the polar and the axial perturbations
of a spherical star can be studied as a problem of scattering of incident gravitational
waves by the curvature of the space-time. However, the two classes of modes differ
in one important respect: the incidence of polar gravitational waves induces
oscillations in the fluid, the incidence of axial gravitational waves does not. It is
known from the newtonian theory that the polar modes are resonant, and frequencies
of oscillation have been measured in several astrophysical contexts. Thus stars are
expected to emit polar gravitational waves with these characteristic frequencies. The
question now is whether the axial modes can be resonant, and, in that case, what are
the frequencies of the emitted gravitational axial waves. We shall answer this
question in two different context: (@) very compact stars, and (b) slowly rotating
stars.
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440 V. Ferrari

The phenomena which we are going to describe do not have any counterpart in the
newtonian theory since they derive from purely general relativistic effects.

(@) The resonant behaviour of the axial modes

In order to ascertain whether the axial modes can be resonant, in Paper IV we
have applied the method to find the complex eigenfrequencies developed in §6 to a
model of star with uniform energy density distribution. This model, although clearly
unrealistic, presents several advantages. The equilibrium configuration is known as
an exact solution of Einstein’s equations (the Schwarzschild solution). Moreover, this
assumption enables us to study the axial modes in a regime where the effects of
general relativity are as strong as they can ever become under conditions of
hydrostatic equilibrium. The unperturbed configuration (cf. Chandrasekhar & Miller
1974), is

1.3

¢ = const. m(r) = ger’, P =ey—y)/ By —y),
e =By —y)? e = (1—Fer?):
y=(1—-3eR?,  y, = (1—}eR?):
At the boundary of the star r = R,
ep = €% = 1—2M/R, (109)

and the metric exterior to the star reduces to the Schwarzschild metric.

Homogeneous stars can exist only if their radius R exceeds I times the
Schwarzschild radius R, or R/M > 2.25. The models we shall consider in the
following will be labelled by the parameter (R/M). For values of (R/M) > 2.6, we find
that the axial modes are not resonant. The reason can be understood by plotting the
potential barrier (22), computed for the model of star described in (108), as a function
of r/M for different values of (R/M), as shown in figure 1. It is known from atomic
physics, that scattering by a potential barrier will exhibit resonance if the potential
has a minimum followed by a maximum, and if the potential well is sufficiently deep
to ensure the occurrence of quasi-stationary states. In our present context we see
that only when (B/M) < 2.6, namely when the star becomes very compact, this
condition is satisfied, and the axial modes do become resonant. In table 1 it is also
shown that the imaginary part of frequency dramatically tends to zero as we
approach the limit (/M) = 2.25. Therefore, the more compact is the star, the longer
will be the time needed to damp the axial oscillation.

It is interesting to note that the axial quasi-normal modes that we have found for
homogeneous stellar models with radii approaching the limiting radius, are not
related to the Schwarzschild quasi-normal modes. We might have expected that,
when the star tends to the limiting configuration, the frequencies of the quasi-normal
modes would tend to those of a Schwarzschild black hole of the same mass. But, as
one can see from table 1, this is not the case. For example, for a star with R/M =
2.26 we find 7 & 4 x 108, while a Schwarzschild black hole of the same mass would
have 7 = 5.73! The reason is that the nature of the scattering in the two cases (a
compact star and a black hole) is different, and different are the boundary conditions
associated to the problem. In the case of a star, we require that at » = 0 the solution
is free of singularity, and that at » = R the metric functions and their derivatives are
continuous, with no restrictions on the direction of the flow of radiation. In contrast,
in the case of a black hole the only boundary condition is that at the horizon there
cannot be an outward directed wave, and only inward radiation can be present.

(108)

ol
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Figure 1. The potential V for I = 2, computed for a model of homogeneous star and for different
values of the ratio R /M. The discontinuity at » = R is due to the discontinuity of ¢. The dashed lines
are the values of (o,M)? corresponding to the quasi-stationary states.

Table 1. The I = 2 axial resonances for homogeneous star with ¢ = 1

. o 1
(M and o are measured in units €2 and €72.)

R/M M o, g,

2.26 0.509798 0.213863874 0.23x10°¢
2.28 0.503105 0.368996 2 0.12x1073
2.30 0.496 557 0.473 525 0.26 x 1074
2.40 0.465 848 0.7767 0.92 x 1072

Consequently, a black hole will be characterized by a reflection and an absorbtion
coefficient, while a star will behave as a centre of elastic scattering for incident
radiation. The progressive increasing of the damping time 7 as the star tends to the
limiting configuration means that the lowest quasi-stationary state is effectively
trapped, and the star cannot radiate in that resonance frequency. In conclusion, we
have shown that in extremely compact stars axial modes can become resonant. Since
neutron stars are likely to have radii in the range 4 < R/M < 6, resonant scattering
of axial gravitational waves by neutron stars is not to be expected. However, it is
possible that these modes may be excited as transients during the gravitational
collapse.
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(b) The coupling of the axial and polar modes in slowly rotating stars

The theory of non-radial oscillations of stars has been developed by assuming that
the unperturbed star is static and spherically symmetric. However, all celestial
objects are known to be rotating, and a generalization of the theory is needed to
describe realistic situations. In Paper I11 we have considered the case of a star that
rotates with an angular velocity € so slow that the distortion of its figure from
spherical symmetry is of order 2% and can be ignored. For compact objects, small
angular velocity means

QR <1, (110)

a condition which is satisfied by most realistic neutron star models. We have
restricted our analysis to the axial modes of slowly rotating stars.
The metric for the unperturbed space-time is (Hartle 1967; Chandrasekhar &
Miller 1974)
ds? = e?(dt)? —e¥ (dp — o dt)? — e¥2(dx?)? —e*s(da®)?, (111)

where v, iy, u,, 4, differ from those of a spherical non-rotating star by quantities of
order ©?, and w (that is zero in the non-rotating case) is now of order Q. The
equations governing v, ¥, 4y, 4ty to order zero in £ are given in §4. The equation
determining o is

ID",YT‘F(4/1’)10"7—(/1/24-1/)’7(‘(D’¢+(4/’r')w) =0, (112)

where we have defined
w=0—w. (113)

In the vacuum outside the star, u, +v = 0 and the solution of (112) can be written
as
w=02—-2Jr3, (114)

where J is the angular momentum of the star. Both inside and outside the star @ is
a function of r only, and the continuity of @ at the boundary requires that (@),_, =
6JR™*. It should be noted that the function @ is responsible for the dragging of
inertial frames predicted by the Lense—Thirring effect.

The equations governing the perturbations of a slowly rotating star can be derived
by assuming that the metric appropriate to describe the phenomenon has the same
form as (10). We retain the hypothesis of axisymmetric perturbations because the
distortion of the unperturbed configuration from spherical symmetry due to the
rotation is only of order Q2. However, there will be relevant changes with respect to
the equations that we have derived in §4 for the non-rotating case, since now the
unperturbed fluid is in slow rotation with a velocity

V@ =0, (a=2,3), "W=V=e/"(Q—0w)=e¢'"m, (115)

where v = 2, and »® are the tetrad components. The basic equation appropriate
to describe the axial modes in the present context is

(e_3¢+"_,‘42+/‘3X 7’) 7’+ (e_3¢+”+/"2“l‘3X (}) 0+0-2 e_3¢_"+/"2+/‘3X
= @ ,(30y) — v — Oy +8u;) y—4l(e+p) e &, @] y+4(e+p)e s Eym] . (116)

where we have made the assumption that all perturbed quantities have the same
time dependence e'”*, and that X is the same function defined in (17). Equation (116)
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should be compared with (16) valid in the non-rotating case. The difference is that
on the right-hand side of (116) in place of zero we have a combination of the
perturbations (8, 8v, uy, Spus, &5, &5), that describe the polar modes, multiplied by @
and @ ,

Thus if a star is slowly rotating the polar and the axial modes are no longer
independent : they couple through the ‘coupling function’ @ that is responsible for
the dragging of inertial frames.

To further clarify the nature of this coupling, we may expand all perturbed
quantities in terms of £, say

X=X4+0X"+..., 8¢ =04"+Q0y'+..., ete.

Let us consider (116) at lower order in Q. Since w is of order Q, we shall substitute
to (8, OV, Oy, Oy, &y, &), their zero-order terms in 2, i.e. (d3y°, 8v°, Sul, ul, &3, £9).
Consequently, the axial perturbations X on the left-hand side of (116) will be of order
one in Q(X1):

(e_3¢+V_/42+/‘3 X’lr), ’ -+ (e_3‘/’+”+ﬂ2_ﬂ3X1 ) + 0'2 e_3'/’_”+/42+:“3 Xl
(330 — 80— b+ 8ud) o~ 4l(e +p) & Bw] y+4lle+p) BB . (117)

In a similar manner, the zero-order (with respect to ) axial perturbations X° will
be the source for the first-order polar modes, (3y/*, dv', dul, dul, &, &), of a slowly
rotating star, a case that we are not going to treat in the present paper.

Since the left-hand side of (117) is the same as (16), we can expand X' in terms of
Gegenbauer polynomials (see (20)). It should be stressed that (8y°, 31°, du3, dus, £9, £9)
are the solution of the polar equations to order zero in 2, namely the solution
appropriate to a non-rotating star that we have discussed in §5. Therefore, the
‘source term’ on the right-hand side can be separated in terms of Legendre
polynomials as indicated in (25) and (26). By introducing the variable r, defined in
(19), and the function Z! = Xl/r we find that (117) reduces to

271
Z,‘{dZ

= *

2Zhn—wu+nr+re —p)— wnZ$0ﬁﬂm

2v

=6%§-J(1—1u2)2

M8

Sy(r,p),  (118)

1=2

1l

where
Sy = [(RW+ N +5LY+2nV Py, +2uVP P, , 1+ 20WHQ—1)v P (119)

and @ has been defined in (35). Equation (118) is valid from the centre of the star up
to radial infinity, remembering that outside the star, ¢, p and W are zero. To
eliminate the angular dependence in (1 18), we multiply by %, and integrate over
the range ¢ = cos = (—1,1). Since 0m+2, P, ,and uP, ,  are of opposite parities, it
follows that the polar modes belonging to even / can couple only with the axial modes
belonging to odd [, and conversely, it must be

l=m+1 or I=m—1. (120)

Loy o 1,

Moreover, a propensity rule is true. Due to the behaviour of the source term SY near
the origin (for details, see Paper 111, eqns (61)-(63)), the transition / >+ 1 is strongly
favoured over the transition {—/—1. It is interesting to note that these ‘coupling
rules’ are known in atomic theory : the first is the Laporte rule, while the propensity
rule has been formulated (Fano 1985) in the context of light absorption. Once again,
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we are dealing with a phenomenon in general relativity that has a counterpart in the
theory of quantum mechanics.

The problem which we have formulated is essentially a two-channel problem, the
two channels being the axial and the polar modes, and it is clear that a whole range
of problems with different initial conditions can be formulated. We have seen that in
general the axial modes of a non-rotating star are not resonant, unless the star is
extremely compact. Conversely, the polar modes are always resonant. In a slowly
rotating star the axial and the polar modes couple in the manner that we have now
described, and it is interesting to ask whether, due to this coupling, the axial modes
may exhibit resonances. To answer this question we consider the following situation.
Suppose that a polar gravitational wave of frequency o excites the star in its
quadrupole polar mode ! = 2. If the star is slowly rotating, the polar perturbation of
order zero in £ (the same as if the star were non-rotating), will act as a source for the
axial perturbation with m = 3, according to the Laporte and the propensity rule, as
shown in (118) and (119). We can solve (118) and find the values of ¢ for which the
solution at infinity reduces to a pure outgoing wave. All the methods developed in
the previous sections can now be applied, since at infinity the right-hand side of (118)
goes to zero at least as fast as r2, and the wave equation tends to a homogeneous
Schrodinger equation. As an example, in Paper 11T we have applied this procedure
to a politropic model of star, with a politropic index n = 1.5, for different values of
the angular velocity €. For this star the axial modes were not resonant in the non-
rotating case. We have found that when the star does rotate the axial modes become
resonant. Their resonances are different from that of the polar modes, and in
particular, the damping times are considerably longer (hundred times longer in the
example we have considered). Thus, in a slowly rotating star, the axial modes are
resonant even if the star is not extremely compact, and this resonant behaviour is a
consequence of the coupling between the polar and the axial modes, that is induced
by the dragging of inertial frames.

10. Concluding remarks

The idea that certain types of variable stars owe their variability to periodic
oscillations, originally due to Shapley (1914), received a first mathematical
formulation in 1919 (Eddington 19194, b). Since then, stellar pulsations have been
studied both in the framework of the newtonian theory, and in general relativity, and
one might think that nothing new can be said on the subject. However, if the search
is focused on those phenomena that are of pure relativistic origin, some new
interesting effects emerge which disclose the original content of the theory of general
relativity.

A first result of this approach is a totally new interpretation of the phenomenon
of non-radial oscillations of stars: we have shown that it can be studied as a problem
of pure scattering of gravitational waves by the curvature of the spacetime. This
interpretation is straightforward for the axial modes, since they are governed by a
single Schrédinger equation with a potential barrier depending on the particular
distribution of energy density and pressure inside the star. In the case of the polar
modes, the scattering nature of the problem emerges as a consequence of the
decoupling of the equations that govern the perturbations of the gravitational field
from those that describe the perturbations of the fluid.

Moreover, we have shown that, although the axial modes do not produce a
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pulsating motion in the fluid, they can exhibit a resonant behaviour, either if the star
is non-rotating but compact enough, or if the star is slowly rotating. In this case the
resonances are induced by a coupling between the polar and the axial modes due to
the dragging of inertial frames.

These effects are new. They could not have been anticipated by the newtonian
theory of gravity, and they were obscured in the existing relativistic treatment of the
problem. An interesting possibility follows from these results. When a Schwarzschild
black hole is perturbed, both the axial and the polar modes are resonant, and they
have exactly the same resonances. Conversely, when a star is perturbed the spectrum
of the axial and the polar modes is different. Thus, there is a clear signature in the
spectrum of the quasi-normal modes which allows to distinguish whether the
emitting source is a star or a black hole. An unambiguous identification of black holes
will therefore be possible when axial and polar gravitational waves will be detected.

But perhaps one of the most interesting consequences of our approach is that it
discloses analogies and correspondences between the theory of general relativity and
the theory of quantum mechanics. The fact that we can evaluate the frequencies of
the quasi-normal modes, and compute the flux of gravitational radiation by
generalizing the Breit—Wigner and the Regge theory, or the existence of a Laporte,
selection and propensity rule which govern the coupling between the axial and polar
modes of a slowly rotating star, provide an example of a close interconnection
between the two theories, that has remained veiled for more than 50 years.
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